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Abstract—In this article we introduce a continuous time implementation of adaptive resonance theory (ART). ART
designed by Grossberg concerns neural networks that self-organize stable pattern recognition categories of arbitrary
sequences of input patterns. In contrast to the current implementations of ART we introduce a complete implementation
of an ART network, including all regulatory and logical functions, as a system of ordinary differential equations capable
of stand-alone running in real time. This means that transient behavior is kept in tact. This implementation of ART is
based on ART 2 and is called Exact ART. Exact ART includes an implementation of a gated dipole field and an
implementation of the orienting sub-system. The most important features of Exact ART, which are the design principles
of ART 2, are proven mathematically. Also simulation studies show that Exact ART self-organizes stable recognition
codes that agree with the classification behavior of ART 2. © 1997 Elsevier Science Ltd.
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1. INTRODUCTION ART 2-A, and ART 3 are more complex and can process
analog patterns. Fuzzy ART can also handle analog pat-
terns, but resembles ART 1. All these implementations of
ART, however, take also computational complexity into
account. As a consequence, some very interesting dyna-
mical aspects of the model that are described by Gross-
berg (1980), for example those of the gated dipole field
(GDF), are approximated by a substitution of the equili-
brium behavior.

In this article we will show that the original ideas
about ART can be completely implemented as a stand-
alone system of ordinary differential equations (ode’s).
In contrast to the current implementations, the model we
will introduce is a complete implementation of an ART
network, including all regulatory and logical functions,
as a system of ordinary differential equations capable of
stand-alone running in real time. This means that transi-
ent behavior is kept intact. Since ART 2 agrees most with
the original description, we will take this model as a
starting point of an implementation of ART as is pointed
out by Grossberg (1980).

ART is developed according to so-called design prin-
ciples. These features include biological plausibility,
cognitive psychological plausibility, and environmental
constraints. Obviously, the agreement with reality is

. ) - limited. Models that are completely realistic with regard
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In the present article we introduce a continuous time
implementation of adaptive resonance theory (ART),
which is based on Grossberg’s and Carpenter’s ideas
that are elaborated in several articles (Grossberg,
1976a,b, 1980; Carpenter & Grossberg, 1987b). In
1976 Grossberg introduced ART. ART is a mathematical
model for the self-organization of stable recognition
codes in real time in response to arbitrary sequences of
input patterns. The aim of Grossberg (1980) was to
develop a mechanism of cognitive coding that is stand-
alone. In that article Grossberg does not introduce an
implementation of ART, but he describes the basic
principles that underlie ART. The development of the
model was guided by biological knowledge of the ner-
vous system, (evolutionary) environmental demands, and
mathematical transparency. Different implementations
of ART in several degrees of complexity have been intro-
duced: ART 1 (Carpenter & Grossberg, 1987a), ART 2
(Carpenter & Grossberg, 1987b), ART 2-A (Carpenter et
al., 1991b), ART 3 (Carpenter & Grossberg, 1990),
Fuzzy ART (Carpenter et al., 1991a), and variations on
adaptive resonance (Ryan & Winter, 1987; Ryan et al.,
1987). ART 1 can only handle binary patterns. ART 2,
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features which contradict biological or psychological
principles have to be discarded (cf., Kentridge, 1994;
Sepulchre & Babloyantz, 1991).

The biological plausibility of ART is due to the fol-
lowing three features of the model. First, all dynamic
equations of the system are ode’s. This means that the
model is defined in continuous time. Second, all short
term memory (STM) ode’s, 1.e., the equations that define
neuron activity, are derived from membrane equations
according to Hodgkin and Huxley (1952). Third, both
the STM ode’s and long term memory (LTM) ode’s
use only information available locally in place and time.

An important environmental constraint is expressed by
the noise-saturation dilemma (Grossberg, 1980). All
systems that receive noisy input have the dilemma
between suppression of noise, which may also suppress
low level inputs, and amplification of low level inputs,
which also amplifies noise by which saturation occurs.
Grossberg gives a possible solution of this dilemma by
the introduction of on-centre off-surround structured net-
works. In these competitive networks uniform activity is
suppressed, input differences are enhanced, and activities
are normalized.

The cognitive psychological reality finds expression in
the following features. First, although the network is
implemented on a neurological level, learning recogni-
tion codes can be interpreted as hypotheses formation
and confirmation. Moreover, this search process of
learned recognition codes results in direct access if the
input is sufficiently familiar. Also some other (cognitive)
psychological concepts get an interpretation, e.g., LTM,
STM, priming, and attention (Grossberg, 1980; Gross-
berg & Stone, 1986). Second, classification of input pat-
terns takes place without feedback, but the model can be
extended such that supervised and unsupervised learning
can be combined (ARTMAP, Carpenter et al., 1991).
Most supervised networks, in contrast, can only learn
when feedback is available. Third, ART has important
characteristics allowing for stand-alone running. It solves
the stability—plasticity dilemma. That is, new input does
not remove learned information, but will still result in a
stable recognition code. Moreover, changes in the input
can be detected automatically (Carpenter & Grossberg,
1990). This means that there is no need for careful reg-
ulation of input presentation by a teacher. For us the
cognitive psychological plausibility of ART is of special
interest, since we are working towards a developmental
psychological application of ART (Raijmakers et al.,
1996; Van der Maas & Molenaar, 1992). A stand-alone
and continuous implementation of ART makes it possi-
ble to subject the model to bifurcation analysis in order to
detect qualitative changes in the dynamics of the system
under variation of external and internal parameters.

The outline of the rest of the paper is as follows. In
Section 2 we briefly describe ART 2 and the adaptive
resonance circuit (ARC, Ryan et al., 1987), and we dis-
cuss which adaptations of ART 2 had to be made to
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define the model completely as a system of ordinary
differential equations. One of the major features of our
implementation is a GDF, as described in Grossberg
(1980). Section 3 discusses the architecture and the fea-
tures of the resulting neural network, which we call Exact
ART. This model reproduces the classification behavior
of ART 2. Section 4 presents simulation studies which
are compared with ART 2 and which affirm and supple-
ment the analytical elaborations presented in Section 3.
In Section 5 we will briefly summarize the features of
Exact ART and we will evaluate Exact ART in compar-
ison with ART 2.

2. ART 2 AND ARC

Carpenter and Grossberg (1987b) introduced ART 2 as
an implementation of ART that processes analog input
patterns. They describe several versions of the model.
We base our model, like ART 3, on their figure 10
(page 4930). We will first describe this model briefly,
and then we will discuss which features of the model
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FIGURE 1. A schematic representation of ART 2 after
Carpenter & Grossberg (1987b), figure 10. The filled circles
denote the off-surround connection structure, that is inhibi-
tory connections between layers. Precise definition of the
network is given in the text.
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need to be adjusted to keep all transient behavior intact.
Ryan et al. (1987) introduced a variation on ART, the
property inheritance network which contains the adap-
tive resonance circuit (ARC). In contrast to ART 2, ARC
has a dynamic implementation of the reset procedure,
which does not contain a gated dipole field. We will
discuss ARC briefly at the end of Section 2.

2.1. ART 2: Architecture Definition

ART 2 consists of four main parts: FO, F1, F2, and the
orienting subsystem. Fig. 1 shows a schematic view of
ART 2. FO transforms all inputs, which transformations
include normalization, noise suppression, and contrast
enhancement by means of competitive nonlinear interac-
tion between layers. Competition is due to an on-centre
(drawn as dashed arrows) off-surround (drawn as filled
circles) connection structure between layers. F2 selects a
learned recognition pattern, which is stored in the LTM
connections between F1 and F2 (drawn as half ellipses),
by means of a winner-takes-all competition. F1 combines
input from these two sources: bottom-up (BU) input from
FO and top-down (TD) expectancies from F2. The F1
activity and the FO activity are compared by the orienting
subsystem. If they match then the LTM connections
adapt to the F1 activity pattern. If they do not match
then the current active F2-node is quenched, F1 and F2
are reset, and a different F2 node is selected. The search
process repeats itself until BU input and TD expectancy
match and resonance appears between F1 activity and F2
activity.

All units or neurons of ART 2 obey membrane equa-
tions of the following form:

ead-tv,. = —AV,+(1 =BV, —(C+ VDI~ (1)
J;* is the total excitatory input, J,” the total inhibitory
input. A is the decay of activity, C is the lower-bound of
activity (i.e., inhibitory saturation point). Without any
external input the activity becomes zero (i.e., the passive
saturation point is zero). The parameter ¢ is the ratio
between STM-ode’s (that define F0, F1, and F2 activity)
and LTM-ode’s (that define the change of weights of the
connections between F1 and F2): 0 < e«1. If dV/dr = 0,
which implies that V; is in equilibrium, and additionally
B =0, C=0,eqn (1) reduces to eqn (2):

J*f
V=
i A+]7

The following equations define the activity of the system
in equilibrium.

(2)

WO,‘ 21,' +au0,~
WO,'

0= A Tiworl
v0; =f(x0;)

651

vOi

40 = A Tvon

w; = u0; + au;

_ Wi
= A W]
v; =f(x;)+ bf(q)
Y A

pi=u+ _8()’,‘)21‘1‘
]
— Di
A+ lipll

o) Oif x<@
()=

xif x=0
itpll, livll, liwll, IIvOll, and w0l correspond with J™ in egn
(2). These inhibiting connections between layers normal-
ize the activity within a layer with regard to its Euclidean

norm. The activity in F2 is denoted by y;. The input of a
node y; in F2 is T}, which is defined by:

N
= pi

i=1

q;

F2 is said to make a choice between the nodes y;, which
implies that only the node with the maximal input that
did not cause a mismatch becomes active. This is
expressed as follows:

dif T; =max {Tj | the jth node has not been

g(yj)‘:

reset on the current m'al}

0 otherwise

The LTM equations, the ode’s that define the change of
zji and z;, are given by:

d
(F2—F1): 22;=g0)p; — %l

d
(F1—F2): e =gy — 2]
The calculation of a match between a TD expectancy (z,
which is reflected in q) and a BU input (I which is
reflected in u0) takes place by means of units r;. The

equation for r; in equilibrium is as follows:
u; + cp;
r=
P A Tl + lepll

The Euclidean norm of r, lirll, is compared to the vigi-
lance parameter r in order to decide whether BU and TD
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expectation patterns match. A mismatch takes place if in
equilibrium lIrll < (o0 — A). If a mismatch is established
F1 and F2 activity is reset and recalculated. If a TD
expectation pattern matches the BU input pattern, the
LTM trace connected to the active F2-node is updated.
This sequential procedure for calculating STM and LTM
traces is thought to be a proper approximation of simul-
taneous update for two reasons. First, the LTM-ode’s are
much slower than the STM-ode’s (expressed by a small
value of € in eqn (1)). Second, the period of transient
behavior of activities is much shorter than the equili-
brium period during one input presentation. A more
extended elucidation of ART 2 is given by Carpenter
and Grossberg (1987b).

2.2. Lack of Transient Behavior in the
Implementation of ART 2

Carpenter and Grossberg (1987b) show that ART 2 pos-
sesses the main features of an ART model. However, in
the simulations only an approximation of the dynamics,
that means equilibrium values of neuron activities, are
used. Although the implementation is simplified, the arti-
cle about ART 2 also presents an outline for a more
complete implementation. That means, for the modules
of which only equilibria values are implemented, a com-
plete dynamic description is given. Nevertheless, making
a completely continuous implementation of an ART
model is not straightforward. One reason for this is that
the interaction of transient behavior of modules can
affect the equilibrium behavior of the model and thus
the performed classification unexpectedly. It even
appeared that the simultaneous update, instead of a
sequential update, of STM and LTM ode’s influences
the outcome of the classification. Furthermore, some
aspects of the behavior, like initializing activities before
presentation of an input pattern and generation of an
arousal signal, are not defined as dynamic processes.

More specifically, the adjustments that should be made
are the following: First, F2 needs an implementation in
which both the winner-takes-all dynamics and the sup-
pression of nodes due to reset are defined by ode’s. Sec-
ond, the orienting subsystem should be changed in that
both the onset of the inhibition after detection of a mis-
match and the generation of inhibition signals are imple-
mented by a system of ode’s. Third, the detection of
changes in the input should be performed by the orienting
subsystem (as in ART 3). Fourth, initialization of activity
before the presentation of a new input pattern should not
be necessary. Fifth, transients should not destabilize net-
work dynamics. This implies, for example, that transient
activity does not initiate a reset if the equilibrium situa-
tion will not lead to that. Sixth, all ode’s are numerically
integrated simultaneously instead of calculating the LTM
ode’s after STM ode’s reached equilibrium.

In the next section, we will introduce Exact ART.
Apart from the adjustments of ART 2 that we proposed
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above, we will introduce some additional ones. As a
consequence of these adjustments, we could mathemati-
cally derive the important characteristics of the match
procedure (Raijmakers & Molenaar, 1994).

2.3. The Dynamic Implementation of the Reset
Process in ARC

As we mentioned above, one of the aspects of ART 2 that
are not implemented dynamically is the reset process. In
their ARC, Ryan et al. (1987) made an elegant dynamic
implementation of the reset process without using a
GDF. ARC handles binary input patterns without
normalization of activity of the input layer and com-
parison layer. The latter is crucial for the similarity
measure, which is used in the reset procedure. The simi-
larity measure of ARC is as follows:

N
Zf(xi)

S(D. Ty)= "=
2.4
i=1

where {x,, xs,.., Xy} are the nodes of the comparison
layer (F1 in ART 2), function f is a threshold function,
and {d,, d»,..., dy} is a binary input pattern.

The suppression of mismatching F2-nodes is now
implemented by nodes r; which are governed by:

dgrf=Rny>-rj
Lif s(D,T)) < p Lif Us(D,T))< p
“= { 0 otherwise },612 N { 0 otherwise }’
R=Ryf(a; +a3)

where y; is a node of the F2 layer, p is the vigilance
parameter, R, is a constant, and r; decays at the LTM
rate. Each node y; of F2 is inhibited by the corresponding
node r;, so that r; acts as directed arousal. Since we intend
to implement an ART network that corresponds with the
original description in Grossberg (1980) as much as pos-
sible, we implement a GDF with undirected arousal to
reset mismatching F2-nodes. Moreover, Exact ART, as
ART 2, handles analog input patterns and has normalized
activity of the input layer (FO in ART 2 and Exact ART)
and the comparison layer (F1 in ART 2 and Exact ART).
Therefore, the similarity measure of ARC in its present
form cannot be applied to Exact ART.

3. EXACT ART: NETWORK DEFINITION

Exact ART is a neural network that is completely defined
by a system of ode’s that is capable of stand-alone run-
ning in real time. For the development of Exact ART we
followed the design principles of ART 2 and searched for
ode implementations of the discrete features, which were
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FIGURE 2. This figure shows an outline of Exact ART. The model consists of four major parts: F0, F1, F2, and the orienting
subsystem. A full description of the model is given in Section 3. Each filled black circle denotes an element of a layer of
equivalent nodes. Each white circle denotes a single unique node. Striped circles denote nonspecific interactions: excitory
for the dark circles and inhibitory for the light circles. Black arrows denote specific interactions: excitatory interactions for plain
lines and inhibitory interactions for dashed lines. Grey arrows denote nonspecific inhibitory arousal. Filled rectangles and half
ellipses denote adaptive weights. Note that the model is designed after the second version of ART 2 (Carpenter & Grossberg,
1987b), and bears a large resembiance to it. The mathematical definition of the model is given in Section 3.1.

mentioned in Section 2. Exact ART resembles the
ART 2 architecture in many respects and shows approxi-
mately the same classification behavior. We will first
present the network by a schematic view (Fig. 2) and
by the system of ode’s. This will be followed by a dis-
cussion of general features of the model and the main
differences with ART 2. In Sections 3.2—3.7 the features
of individual network modules are described. Mathema-
tical proofs will be given, as far as possible, in the
Appendices.

3.1. System of Ordinary Differential Equations

FO ~ input transformation:

I dx0, 3
———= — Ax0; + (B — x0,){, _XOiZIk 3
¢ ds k#i

1 duO;
————= — Au0; + (B — u0,)f (x0,,0
s dr u0; + (B — u0;)f (x0;, 8)

k#i

N
— u0; ( D F(0, 0) + cf (A, 6)) (4)

F1 — combination of bottom-up input and top-down
expectation:

(jj_xtiz —Ax; + (B — x;)(u0; + au;)
N N
—x; <Z u0y, +azuk +Cf(AE’0)) ®)
k#i k#i
du
%: —AM,' + (B - ui)(xi +bq’)

N N
_ <Zxk +bY g+ cf(Ap, e)> (6)

k#i k#i
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dg; <
Eq? = —Aqg; +(B—q)pi —q; (Zpk + cof (Ag, 0)) Q)
k#i
dp;
5 = pitd S st u—pef el ®
j=1
F2 - gated dipole field:
dy2;
d—tf= —¥2; + 617 +Ag (10)
dy3;
dyd,;
dys;
5 = ~ A5+ B-y5)
N
X (h(ysj)ﬂa,- te) \/“zk,-pk)
k=1
M
—5; (Z h(ysl)+y4,«) (13)
I#j
1dzl;
57—6(7 z1;) = 8[yl; — Tzl (15)
1dz2;
——3—6(7—22) [y2; -T" 22 (16)
h(x)=x* (17)
Orienting sub-system - matching and nonspecific
arousal:
dr,- 1
E[—— —r,--’r--2-|u0,-—qil (18)
1d4
sar = ~Arteladeas—CA=0.+5)  (19)
1dA
;?Ht_l = —A;+g(ac:Ap — A —8))  20)

N +
1d5_ —AS+(B—S)[Z r—(1 —p):|
v de =

i=1

N +
—wS[(l —p)— Zr{l Q1)
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LTM - connections between F1 and F2:

1 dgz;
a_]—df(yp y)(f(pno) Z}i) (22)

1dz;
a__df(y]’o )(f(pne) ij) (23)

Non-linear signal functions:
o xifx>48 4
TEO=10itx=0 )
1

gx)= TT exp(= %) (25)

The notation used in this section and the following
sections is as follows: Vectors are written in bold charac-
ters (x0, ul, x, u, q, p, yl — y6, z1, z2, r), the weight
matrix is also written as a bold character (z). Vector
elements are denoted by italic letters with an index; i is
the index of F1 and FO elements, j is the index of F2
elements (x0;, ..., p;, y1;-¥6;, z1;, 22;, 1;, 25, z;;). N is the
number of elements within F1 and FO layers. M is
the number of F2 elements, i.e., gated dipoles. The
index of the winning node in F2 is J. Ag, A}, and S
denote activities of the orienting subsystem. The sum
of activities within a layer is denoted by an italic letter
without an index (x0= SV, x0,). The external input
is denoted by I = ({4,..., [i..., Iy). Further notations
used in this chapter are explained in the Appendix.
Constants of above equations and their default values
are summarized in Appendix C.

Apart from the architecture specified above, additional
assumptions are made. The match is denoted by R:

N
R= Zr,-

i=1
R = 0 corresponds to a perfect match; R = 1 corresponds
to a maximum mismatch. At time ¢ = 0 TD connections,
Zji,» are equal to O for all i = M and j = N; BU connec-
tions, z;; for all { = M and j < N, are initialized randomly
from a uniform distribution between 0 and a constant
value (i.e., z;{0)). Constant B is set to 1. In most math-
ematical analyses, A will be taken to be 0 (conforming
with Carpenter & Grossberg, 1987b), since its actual
value will be very low (0.001). The constant e is very
small for reasons given below, (i.e., ¢ = 0.01).

The procedure to simulate the network on a computer
consists of simuitaneous calculation of a solution of the
whole system of ode’s by means of a numerical integra-
tion procedure. We use Divpag from the IMSL-library
(IMSL, 1991). Section 4 shows some simulations we
performed with Exact ART. We will discuss the simula-
tion procedure more extensively in that section.

3.2. Differences Between ART 2 and Exact ART

The structure of the presented system is globally
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equivalent to the second version of ART 2 (Carpenter &
Grossberg, 1987b, figure 10). This means that the BU
input pattern is pre-processed in FO before it is combined
with a TD expectation pattern in F1. A match between a
BU input pattern and TD expectation pattern is calcu-
lated by the orienting subsystem.

The first striking difference between Exact ART and
ART 2 concerns the normalization of activity within
layers. In contrast to ART 2, normalization takes place
with regard to the summation of activities, instead of the
Euclidean norm of the activity vector (Carpenter &
Grossberg, 1990, mention this possibility). We use
(non-shunting) networks described by Grossberg
(1980), which have a constant sum of activity due to
on-centre off-surround input. In Fig. 2 the on-centre
input, i.e., specific input, is denoted by plain arrows.
The off-surround input, i.e., non-specific input, is
denoted by light-colored striped circles. The general
form of the ode’s, which are instances of Hodgkin—
Huxley equations, defining these networks is:

N

Q= —Ar+ B--@+OY L @8
dr k=i

The FO and F1 layers, except for p, have the form of eqn

(26), with C = 0. Grossberg (1980) proves that eqn (26)

solves the noise-saturation dilemma. In equilibrium Gi.e.,

dx/dt = 0 for all i = N) the following equation is valid:

_@B+oIf, ¢
T AT (J" B+C) @7

According to eqn (27), x; is proportional to J; (J; =1/
Dminus a constant (i.e., C (B + C)~"), which implies that
it is independent of the sum input. That is, also in the
presence of noise, the network is not saturated but repre-
sents differences between input elements /;. The sum of
activity, denoted by x, equals [B — (N — 1)C](A + 1)_1.
If C = 0, which is the case for the FO and F1 equations, x
does not depend on ¥ and is equal to B (provided that A is
taken to be 0). Under various conditions, eqn (26) sup-
presses noise, which means that uniform input patterns
are quenched. As will be explained in Section 3.3, we use
another solution for quenching uniform patterns in FO,
for reasons given there.

The change of normalization properties in the present
implementation has two major consequences. The match,
R, heavily depends on the normalization of activities
within q and uf. Hence, the match procedure had to be
adjusted (see Section 3.7). Also the input function of F2
needed to change. In order to prevent different z-traces
with equal norm to cause ties, the input of a F2-dipole is
made a nonlinear function of the inner product of p and
the BU z-trace (Section 3.6).

A second difference between ART 2 and Exact ART
concerns the nonlinear function f. We moved f from u to
the LTM-ode’s (eqns (22) and (23)) and u® (eqn (4)).
The reason with regard to the LTM-ode’s is to preserve
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the 2/3-rule (see Section 3.4). The introduction of fin u0
is necessary for contrast enhancement and for preser-
vation of the perfect match in case 0 = J; = ¢ for
some i < N (see Section 3.3).

A third difference concerns the introduction of ode’s
that implement the orienting subsystem. The dynamics of
the orienting subsystem can be described as follows. §
increases from O to 1 if R exceeds 1 — p (the vigilance
parameter). p constitutes the match criterion of a BU
input pattern and TD expectation pattern. If § is increased
to almost 1, Ay increases suddenly from below zero to 1
and then inhibits several layers (see Section 3.8).

The fourth and major difference concerns the defini-
tion of F2. Its global structure is a lumped shunting net-
work with local on-centre and global off-surround
connections, which is expressed by eqn (13). As Gross-
berg (1973, 1980) and Ellias and Grossberg (1975) have
shown, this type of networks obeys a winner-takes-all
dynamics if the feedback function A is faster than
linear. However, their proofs concern shunting networks
without enduring external input. In their proofs patterns
are presented by initialization of the activity of the nodes
at time ¢ = 0 instead of an enduring external input. We
showed that lowering the effect of the input on units y5,,
by means of parameter e (0 < e«1), is an alternative way
of presenting input without changing the global proper-
ties of these networks (Raijmakers & Molenaar, 1994).
The elements of the shunting network are gated dipoles.
These gated dipoles are based on Grossberg (1980).

In addition to the system of ode’s, we changed the
solution procedure of Exact ART as well. Carpenter
and Grossberg (1987b) use an approximation of a simul-
taneous solution of STM and LTM ode’s. They first com-
pute the equilibrium values of the activity in the network
and then, in the fast-learning case, they compute equili-
brium values of all LTM ode’s based on the former equi-
librium. In contrast, we compute (equilibrium values of)
all ode’s simultaneously by means of a numerical inte-
gration procedure. Although the first procedure is
thought to approximate the latter, in some cases there
appear to be significant differences (Section 3.4).

In the following sections, we will discuss the different
modules of Exact ART one-by-one. In this article, not all
proven features of the model are elaborated completely.
For a more extended description we refer to a technical
report (Raijmakers & Molenaar, 1994). Since mathema-
tical analysis of the transient behavior of the network is
only discussed in a few cases, simulation studies are
important to be performed. In Section 4 we present simu-
lation studies that compare the classification behavior of
Exact ART with the classification behavior of ART 2.

3.3. FO: Input Transformation

Preprocessing of the input consists of three transforma-
tions: contrast enhancement, noise suppression, and nor-
malization. These transformations are performed by x0
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and u0. First, the input, I = (1}, ..., [;,....I ), is transformed
into the normalized pattern x0. Then, through a partially
linear function f, x0 is gated in that 40; = 0 if x0; = q.

The latter appears to be necessary to maintain the 2/3-
rule (see Section 3.4). In addition, u0 activity is normal-
ized with respect to sum activity. As a consequence, the
contrast of the pattern is enhanced and uniform input
patterns are suppressed. According to Grossberg (1980)
uniform input patterns can be interpreted as noise.
Hence, noise suppression is performed by FO.

3.4. F1: Combination of Bottom-up Input and
Top-down Expectation

F1 receives input from two sources: FO and F2. The main
function of F1 is to combine these inputs. In the match
procedure the resulting pattern is compared with the trans-
formed input pattern u0. Carpenter and Grossberg (1987b)
discuss four main features of F1: Normalization of STM, a
TD expectation pattern is normalized before it interacts
with a BU input pattern and vice versa, STM is invariant
under read-out of matched LTM, and the 2/3-rule.

In Exact ART normalization of STM takes place in x,
u, and q, since these layers are structured according to
eqn (26).

A BU input pattern is transformed by F0. The result is a
normalized activity pattern u0, which serves as input for
F1. A TD expectation pattern is represented by LTM traces
Z;= (21,2552 gn)- In the fast-learning condition, which
means that LTM traces reach equilibrium each time a new
input pattern is presented, z; is equivalent to p (cf., Section
3.6). For each i, i = N, holds that at equilibrium

U

T 1-d

Since u is normalized, p is normalized (sum of p;
elements = p = 1/(1 ~ d)). Hence, z; is normalized as
well. In equilibrium the sum of LTM clements connected
to one F2-node equals 1/(1 — d). Hence normalization of
both TD expectation patterns and BU input patterns takes
place before they interact.

In order to check whether STM is invariant under read-
out of matched LTM we examine q in two cases: First if
the TD expectation pattern is zero (i.e., Lz = z; = 0),
and second, if a TD expectation pattern matches a BU
input pattern perfectly. A perfect match means that z; is
proportional to u0. In both cases, q should be equal to u0.
In Appendix A we show that the following holds if the
activities reach equilibrium:

_ uO,- + X(l +b +ab)Z_]i
T T x(T+ b+ ab))

pi (28)

ﬁ: Py (29)
Lk

N
otherwise Z;; =0; x=d Z Lk
k=i

M. E. J. Raijmakers and P. C. M. Molenaar

If no learning took place, which agrees with the first case,
x = 0. Hence eqn (29) reduces to: ¢; = u0; foralli,i = N.
If z; is proportional to u, which agrees with the second
situation, then Z,; = u0; for all { = N. This implies:

_ u0,(1 +x(1 4+ b+ ab))
I T X+ b+ab)

from which follows that ¢; = u0; for all i, i = N, QED.

The 2/3-rule posits that elements in F1 only become
active if they receive input from both FO and F2. This
implies two conditions. First, z;; does not increase if z;; =
0 and x > 0, even not if 0, > 0. Second, z;; becomes 0 if
u(0; = 0, even if initially z;; > 0. Analogous to ART 2, we
implement the 2/3-rule implicitly by means of the intro-
duction of parameters a, b, and 8. In contrast to ART 2 we
introduced the threshold 6, in the LTM ode’s (eqns (22)
and (23)).

To prove that the 2/3-rule holds for Exact ART, we
start with the first situation. This situation is character-
ized by the existence of nodes i such that Z; =0, u0, > 0,
and x¥ > 0. According to the 2/3-rule, for these i, z;
should remain zero. On above conditions, for these i
eqn (29) becomes:

(30)

N uOi
T 14 x(1+b+ab)

ul);
J— ! 1
P 1+x(1+b+ab)< +1—d)

Since zj; is increased if z;; < p;, u0; increases both p; and
zy. If a,b » 0, the increase is small, but accumulative
because p; increases if z; increases, and vice versa.
Now, the difference between a simultaneous and a
sequential integration of STM and LTM ode’s becomes
apparent. By simultaneous integration, the increase accu-
mulates during the presentation of one input pattern. In
contrast, by sequential integration accumulations only
take place due to several input presentations (cf., simula-
tion of ART 2 with # = 0 in Carpenter and Grossberg,
1987b). Fig. 3 shows the relation between p; and x for
a=hb=20 and u0; = 1 (its maximum value). It appears
that p; decreases very fast with increasing x. Hence, a
threshold in the LTM ode’s prevents z; from increasing
in the case that some learning took place, u0; > 1, and z;
= 0. In order to preserve a perfect match for each input
pattern that selects an uncommitted F2 node, only a
simple demand on u0; is necessary: u0; > 0, or u0;,=0
for all i =< N. This requirement is satisfied by FO.

The second situation of the 2/3-rule is characterized by
the existence of nodes i such that Z; > 0, u0; = 0.
Provided that a,b » 1, eqn (29) implies that for these i

x4+ b+ab)Z,

= (1 + b +ab)
This means that g, decreases only very little. As a result
of simultaneous updating of LTM and STM ode’s the

decrease of g; becomes an accumulative decrease. That
is, g; decreases with regard to zj;, which makes zy

q;
(31

Ji
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FIGURE 3. This figure shows the dependency of p;on x in the
case that Z, = 0, 0, = 1, a=b=20, d=0.5. Because p;
decreases dramatically with increasing c, a threshold in the
learn equations can prevent a cumulative growth of Z.

decrease, and then g, etc. As aresult, those nodes that are
not activated by both a TD and a BU pattern are com-
pletely suppressed. The latter implies a strong 2/3 rule.
Consequently, since the dynamics of q and u are com-
petitive, the activities of the other nodes are enhanced. If
the nodes that are not activated by both the BU and the
TD pattern, are not completely suppressed, the 2/3-rule is
called weak. It should be noted that the 2/3 rule is only
strong if a pattern is learned until equilibrium is reached.
This may take a very long time, since the learning rate, o,
is relatively low.

3.5. F2: a Gated Dipole Field

As the implementation of the F2 field we chose a GDF as
Grossberg (1980) proposed. F2 should fulfil several func-
tions: First, it needs to perform a winner-takes-all
dynamics, which means that the activity of node (or
dipole) j with the largest input (input of dipole j is
named H;) becomes 1 and that the other activities
become 0.

N
H;= Zl v/ Pi%ji

Second, the F2-field should depress all nodes j that were

active before a reset, by means of undirected arousal.

Third, after the undirected arousal, the node (or dipole)

with the largest input that was not active before the reset
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FIGURE 4. A gated dipole that constitutes an element of the
F2-layer of Exact-ART.

should become the next winner. Grossberg (1980)
describes a GDF as a possible implementation of F2.
We adjusted the structure of the proposed dipoles so
that the decrease of the amount of transmitter is propor-
tional to the activity of the dipole instead of being pro-
portional to the input (Raijmakers & Molenaar, 1994).
The resulting recurrent dipole is shown in Fig. 4. Recur-
rent dipole connections are also present in the circuit of
READ I (Grossberg & Schmajuk, 1987) although the
structure of READ is more complex.

To analyse the behavior of the dipole we examine two
situations: the GDF without a reset and the GDF during
and after a reset. In these analyses we suppose the fol-
lowing: The input of the GDF is such that 1 = Hy >
Hy _>...> H,.z1;(0) =", 22/(0) =y for all dipoles j (y
is the maximum and at the same time saturation value of
z1; and z2)). The initial activities of dipole nodes are 0,
ie., yk(0) =0, k = 6, for all dipoles j.

3.5.1. Situation 1. Input H is on, arousal Ag is off, no
arousal event occurred since ¢ = 0. Table 1 shows the

TABLE 1
Equilibrium Values of the Elements of a GDF Described by Situation 1

Variable Dipole 1 Dipole 2... Dipole k... Dipole M

y1,- =0 =~ 0 = ~ 1

¥2; 0 0 0 0

}/\31 =0 = == == Z1 M

v4; 0 0 0 0

¥5; =0 =0 =~ ~1

¥6; ~0 =0 ~0 —Zy<0

z, =~y =y =~y Z1M—'ﬁ"r/(ﬁ+5(1_r))<'y
Z Y Y Y v
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FIGURE 5. Simulation resuits of a small GDF, M = 4, in situation 1. Each figure shows the time course of individual dipole nodes.
yk, (grey line); yk (thin solid line); yk; (medium solid line); yk, (thick solid line).

equilibrium values of the elements of the dipoles in the
GDF. Equations for the GDF in equilibrium are given in
Appendix B, including some additional analyses. Due to
recurrent connections node y5; with the highest input H;,
which is y5y, becomes 1. The other nodes yS,, k # M
quench. Transmitters z1, for k << M are decreased only a
little due to transient activity. In contrast, z1,, decreases
significantly to a lower bound of

zly = B'Y = B’Y
MT B+8lyl,-T1*  B+6(1~T)

Transmitters 22; ( = M) do not change, since y2, = 0 for
all j = M. This analysis resembles the proofs in Gross-
berg (1980).

The analysis of Table 1 can be compared with the
simulations shown in Fig. 5. In the simulations, M = 4,
H=(00,02,04,06),A=0001,B=1,e=00l,e=
0.001,y=05,3=05,8=1,and I' = 0.1. The main
thing that we expected, y5, =~ 1 and y5, = 0, for nodes k
< 4, is clearly shown.

3.5.2. Situation 2. Situation 1 just occurred, H has not
changed, arousal Ay > 0 for a short period. The main

consequence of the onset of arousal Ag = 1 is the occur-
rence of an activity difference between on the one hand
y3, for k < M and on the other hand y3,, This activity
difference is due to the difference between z1, for k < M
and z1,,. As a result y5,,1s depressed more than the other
nodes y5;, k < M (Table 2).

Appendix C shows that if ¢ is much smaller than the
decrease of z1 the order of the growth rates of y5;,j =M
becomes:

ySM < y51 < y52 <)’5M—1

Moreover, if y5, decreases sufficiently so that y3,, = y5;
for some j << M then y5,_; wins the next competition.
This analysis can be repeated for the situation that also
¥5m-1 is reset. Provided that 71 does not recover too fast
compared to its earlier decrease, the ordering becomes:

Yim-1 < Y5 <¥5; <¥5, <..<ySy_,

The changes of z1; in both directions can be adjusted by
means of parameters § and 4 in egn (15).

Fig. 6 shows simulations of a GDF in situation 2. Actu-
ally, this simulation is a continuation of the simulation
shown in Fig. 5. The most important thing that happens is
that after the arousal y5; = 1 and y5, = 0,k # 3.

TABLE 2
Equilibrium Values of the Elements of a GDF Described by Situation 2

Variable Dipole 1 Dipole 2... Dipole k... Dipole M

n; 1<yl <ylu 1<y1,<yly 1<yt <yly Nu>yYlek#M
Y2 1 1 1 1

¥3; Yl Wl o < ¥4y

¥4, ¥ 4 Y ¥

dy5 fdt >0 = dy5 Jdt = dy5,_J/dt <0

¥5; =0 > ¥5, > Y51 - <5

¥ <0 <0 <0 >0

4¥ =7 =y =y <v

2; ¥ v ¥ ¥
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FIGURE 6. Simulation results of a small GDF, M= 4, in situation 2. The first figure shows the time course of the arousal. The other
figures show the time courses of individual dipole nodes. yk, (grey line); yk; (thin solid line); yk; (medium solid line); yk, (thick

solid line).

The same process is repeated if also y5, is quenched
by arousal. Fig. 7 shows the course of y5 including two
arousal events at ¢t = 500 (i.e., situation 2) and ¢ = 1000.
Fig. 8 shows the corresponding time course of transmit-
ters z1;, j = 4. The difference between transmitters z1; of
active and reset dipoles on the one hand and inactive
dipoles on the other hand is shown clearly.

From the analytical studies and simulation studies of
an isolated GDF, we can conclude that the GDF as
depicted in Fig. 4 behaves according to the three rules
we listed at the begin of this section. In Section 4 we will
show how the GDF behaves as a part of Exact ART.

3.6. LTM: F2 and LTM Connections Between F1 and
F2

The L TM-traces between F1 and F2 determine the plas-
ticity of the network. In a stand-alone system not only is
flexibility important, but also stability is crucial. The
stability ~plasticity dilemma, which was mentioned in
Section 2, is one of the important design principles of
ART. In Exact ART, as in ART 2, LTM is only signifi-
cantly changed if the BU input pattern matches the
TD expectation pattern. This means that a learned rare
mismatching TD expectancy will not be removed by

0.8

0.6
yS

0.4

0.2

0 '
0 300

600

900 1200 1500

Time

FIGURE 7. The time course of y5 in a gated dipole field with M =4 and input as described in the text. The simulation starts with
situation 1 (Time is [0, 500]) which is followed by situation 2 (Time is [551, 1000]). Then, after a stable period, another arousal
event occurs. y5, (grey line); y5; (thin solid line); y5, (medium solid line); y¥5, (thick solid line).
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FIGURE 8. The time course of z1 in a gated dipole field with M =4 and input as described previously. The simulation starts with
situation 1 which is followed by situation 2. Then, after a stable period, another arousal event occurs. z1, (grey line); z1, (thin

solid line); z1; (medium solid line); z1, (thick solid line).

dissimilar BU inputs. As long as there exist
uncommitted nodes j, which are connected to TD z;-
traces that equal to the null-vector, new patterns can be
learned.

Another design principle of ART is the search-
direct access trade-off. Classification takes place by
a parallel search process of leamned TD expectation
patterns. If an input pattern gets more familiar the
best matching TD expectation pattern is accessed
directly. This is due to the normalization of LTM
vectors and a nonlinear input function for F2-nodes
y5;. The maximal sum of weights z;; connected to
one F2-node is equal for each F2 node j. If all
LTM ode’s reach equilibrium, that means p;, = zj
for all i = N, the input of y5; equals:

N N
€ zi VZiuPi=é€ _Z]Zijz Tij

i= i=
A consequence of the non-linear input function for eqn
(13) 1s that different LTM traces never match equally
well. Moreover, LTM-traces that match at many sites
with low weights match better than LTM traces that
match at a few sites with high weights. This means that
the most detailed matching TD pattern is chosen first.
The same is assured in ART 2 due to the non-linear
normalization of LTM-traces.

An important feature with regard to stability of ART is
that a F2 choice is stable until reset. Two design princi-
ples of Exact ART assure this feature: First, the on-centre
off-surround structure of y5 is very stable. The input
of y5 determines which node y5; becomes the winner.
But the recurrent connections of y5; nodes determines
which node stays the winner, because the activation
due to recurrent connections is much larger than the
input. The second feature that determines the stability
of F2 is that LTM-changes are always in the direction
of p. Hence, the input of the winning node in F2 can

only increase during learning (the latter also holds for
ART 2).

3.7. R: calculation of a Mismatch

The calculation of a match between a BU input pattern
and a TD expectation pattern is implemented by eqn (18).
The sum of all elements r;, named R, is compared to p to
determine whether the BU and TD patterns match. If in
equilibrium R > 1 — p the patterns match, otherwise they
mismatch. This calculation is performed by S. In order to
determine the features of R in equilibrium we derive the
following from eqns (29) and (18):

N
R= %2 |10, — g;] (32)

i=1

1 x(1+b+ab) <
2(l+x(l+b+ab))i; uli =2t (33)

R should obey four demands: First, without learning the
match should be perfect, i.e., R = 0. In Section 3.4 we
proved that without leamming ¢; = u0Q; for all i = N.
Hence, according to eqn (32), R = 0.

Second, in case that u0; = Z, for all i, the match
should reach its maximum, that is, R = 0. This follows
directly from eqn (33).

Third, during learning, the system becomes more
sensitive for mismatches. The multiplier of eqn (33)
is a monotone increasing function of x if ab > 0
and 0 = x. During learning x increases, which implies
that the sensitivity for differences between u(; and Zj
increases.

Fourth, if the following two conditions are true, the
mismatch is maximal (i.e., R = 1): First, x = d/(1 — d).
Second, u0; = 0 if Z;; # 0 for all i = N, which implies
that Z,; = 0 if u0; # O for all i = N. On the above two
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conditions, eqn (33) implies that

x(1 + b+ ab) .
Z,: f u0, =
1+x(1+b+ab+ if u0; =0
qi= u0; .
vt N— fZ, =
1+x(1 + b +ab) If 2, =0
0 leJ,=u0,=0

N
:>R:l x(1 + b+ ab)

25 T+ x(1+b+ab) ™"

1< x(1+b+ab)
+§,.; T+x(+b+ap)

Since Z, = u0 = 1, the above is equivalent to:

_ x(1+b+ab)
T 14+ x(1+b+ab)

This implies that R = 1 (provided that a,b » 1). In other
words: Maximal mismatch between uf and q occurs if
learning is maximal and in addition (40,,..,u0,,...u0y) is
orthogonal to (Z,,.., Zj,.., Z;y). From the above dis-
cussed four issues we can conclude that all requisites
of the match procedure are fulfilled.

3.8. Orienting Subsystem: Resetting F1 and F2

The function of the orienting subsystem is to release
strong unspecific inhibition if a mismatch is determined.
With that, two problems are involved: First, only if a
mismatch also occurs in equilibrium, the orienting sub-
system should become active. Second, inhibition should
remain at least until activity is back to zero. The first
problem is solved by means of the introduction of S. S
increases to its upper bound 1 (i.e., the default value of B)
if R> (1 —p). If R<(l — p) S decreases to its lower
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bound 0. % determines the rapidity of changes in both
directions, w determines the rapidity of decreases
alone. The rapidity of decrease is of importance for the
second problem. To solve the second problem we
decided to make the inhibition unit, Ag, adaptive to §
so that § acts as a control variable of a hysteresis
function. This means that A is going from low to high
activity (i.e., starts inhibiting both F1 and F2) if S =~ 1
(e.g.,S=1—¢,0<g«1l). Only if § decreases from 1 to
approximately 0 (e.g., S = &) Ag should go back to low
activity. Then Ag stops to inhibit F1 and F2. Eqn (19)
forms, together with eqn (20), a neural oscillator as
defined by Schuster and Wagner (1990). In order to
determine the proper parameter values, we performed a
bifurcation analysis with two control variables: S (the
strength of the external input) and c; (the connection
strength between A; and A,;) (Raijmakers & Molenaar,
1994). The resulting parameter values are listed in
Appendix D. Fig. 9 shows the behavior of Ag if S is
first slowly increased from O to 1 (arrow up) and then
slowly decreased from 1 back to 0. Simulation studies in
Section 4 will show how the orienting subsystem behaves
in combination with the other modules of Exact ART.

3.9. Conclusion

Carpenter and Grossberg (1987b) implemented an ART
model] that classifies analog input patterns: ART 2. We
tried to adjust this model in order to implement ART
completely by a system of ode’s and to keep all transient
behavior in tact. We applied the ideas of Grossberg
(1980) as much as possible. An alternative system has
been described. The presence of all the important fea-
tures could be proven mathematically: normalization,
contrast enhancement, noise suppression, the four
demands of the match procedure and the 2/3-rule. In

FIGURE 9. Time course of A with S varying online. That is, A does not reach equilibrium before S is changed again. First Sis
increased, which causes A to increase suddenly if S =~ 0.95. Then S is decreased, which causes A to decrease suddenly it S

=~ 0.05. Parameter values are given in Appendix B.
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FIGURE 10. The input patterns that are used in the simulation experiments discussed below. The y-axis denotes /, the x-axis
denotes i. The important features of the input patterns are discussed in the text. These figures are associated with the first

column of Table 3.

addition, the activities of both u0 and r are independent
of initial values which implies that changes in the input
are detected by r. The most important addition to ART 2
is a complete implementation of a GDF. The GDF con-
sists of coupled recurrent gated dipoles, which are based
on gated dipoles described by Grossberg (1980).

In summary, the resulting system of ode’s is mathe-
matically simple compared to ART 2 and obeys all our
present requirements: a fully stand alone network of
which all the transient network behavior is kept intact.
Since mathematical analysis of the transient behavior of
the network is only discussed in a few cases, simulation
studies are important to perform.

4. EXACT ART: SIMULATION STUDIES

4.1. A Small Classification Problem

Carpenter and Grossberg (1987b) performed a sequence
of simulation experiments (figure 8, p. 4928), which they
discuss extensively, since it examines important charac-
teristics of the model with regard to stability and plasti-
city. Most of these characteristics, like the 2/3-rule, were
proven to hold for Exact ART. However, some aspects of
the model, mainly with regard to transient behavior, are
not fully understood yet. Simulation experiments may
give further insight and are a crucial test for the perfor-
mance of the model. The classification problem com-
prises four specially designed input patterns (Fig. 10),
which are presented in a particular sequence.

The following features of the input patterns are essen-
tial to test the behavior of Exact ART with regard to
stability. First, the sum of activity (i.e., I} differs between
input patterns, which requires normalization of patterns.
Second, patterns B, C, and D are subset patterns of A in
that all highly activated units of B, C, and D have values
equivalent to Pattern A and, in addition, some elements

B:ul

of A have activities that are much higher than the corre-
sponding elements of B, C, and D. Third, pattern D is a
subset pattern of C, and patterns B and C are exclusive.

The sequence of presentation is A, B, C, A, D. This
sequence is presented twice on trials 1-5 and 6-10. A
simulation experiment consists of the numerical integra-
tion of the entire system of ode’s. In case of fast learning,
the presentation of each input pattern lasts 500,000 time-
units (i.e. the system of ode’s is integrated numerically
from ¢ = 0 to 500,000), which implies that all LTM-ode’s
reach equilibrium. Some experiments do not include an
initialization of activity before the presentation of a fol-
lowing input pattern, apart from the start. Otherwise,
initialization consists of setting all activity vectors to
zero and setting all transmitter values z1; and 22; to v.
Parameter values are listed in Appendix C. Simulations
are performed with several values of the vigilance para-
meter p: 0.0, 0.1, 0.5, and 0.7. The numerical integration
method we used, Divpag, comes from IMSL (1991, p.
755) and is appropriate for both stiff and unstiff initial
value problems.

The input patterns are transformed by layers x0 and
ul. Fig. 11a-d shows u0 after presentation of each of the
four input patterns. This figure shows the effect of nor-
malization and contrast enhancement performed by FO.
Since u0 does not depend on learned LTM vectors z;,
these vectors are invariant across the experiments
described below.

Table 3 lists the sequence of F2-nodes that become
active during each trial and the resulting degree of mis-
match. The last number in each cell outside the brackets
denotes the F2-node connected to the LTM-trace that
represents the input pattern. The preceding numbers are
the sequence of F2-nodes that became active but caused a
reset. The value inside the brackets, is the mismatch, R, at
the end of the trial. In contrast to the last two columns,
columns 2-5 show results of Exact ART obtained with

D:ud

A:ul

C:ul
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FIGURE 11. Activity vectors u0 after presentation of input patterns A, B, C and D, respectively.
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TABLE 3
Classification of Input Patterns with Different Values of o

Input patterns With initialization

Without initialization

p =07 p=05 p =01 =00 p=0.1 p=0.0
A 1(0) 1(0) 1 (0) 2(0) 3(0) 3(0)
B 1,3 (0) 1,2 (0) 1(0.4) 2(0.4) 3(0.4) 3(0.4)
(o] 1,4 (0) 1(0.4) 3(0) 3(0) 3,2(0) 3(1)
A 1(0) 1(0.4) 1 (0.6) 2 (0.6) 2(0.4) 3(0.6)
D 4,1,2(0) 1,3(0) 3(0) 3(0) 2 (0.6) 3(1)
A 1(0) 1(0.4) 1 (0.6) 2 (0.6) 2(0.8) 3(0.6)
B 3(0) 2(0) 1(0.4) 2(0.4) 2,3(0.4) 3(0.4)
C 4 (0) 1(0.4) 3(0.5) 3(0.5) 3,2(0.8) 3(1)
A 1(0) 1({0.4) 1(0.6) 2(0.6) 2(0.8) 3(0.6)
D 2(0) 3(0) 3(0) 3(0) 2 (0.6) 3(1)
Fig. 10 Fig. 12 Fig. 13 Fig. 15 Fig. 15 Fig. 16 Fig. 17

The numbers outside the brackets denote the sequence of active F2-nodes. The numbers inside the brackets are the values of the mismatch R after

learning. Figs 12-17 show the associated learned z, patterns.

initialization at the beginning of each trial. Without initi-
alization the system detects changes in the input automa-
tically. We will first present some general results and
then discuss the individual simulations.

Different values of p lead to a different number of
formed categories. It turned out that if 5 = 0.1 two cate-
gories are formed, three categories are formed with p =
0.5, and each pattern is classified in a distinct category if
p = 0.7. Initialization of the network may also influence
the number of categories. In case no initialization takes
place and p = O the patterns are classified in only one
category. Whereas initialization of activity causes the
network to form two categories if p = 0. It appears
that under all performed circumstances the choice of
F2-node on the second five trials is equal to the final
choice on trials 2—5. This implies that the dynamics
of the system leads to a stable recognition code that
will be reproduced if the same input sequence is
repeated. In addition, the access of the matching F2-
node is direct during trials 610 if initialization takes
place.

In Figs 12-17 learned z, traces that are associated with
the simulation results in Table 3 are presented. The hor-
izontal axis denotes unit index i. In all figures the range
of values on the vertical axis is [0,1/(1 — d) = 2]. z};in
Fig. 12a, for example, denotes values of both the BU and
the TD z,traces, which are equal, after representing

z1i z3i

input pattern A in z; with p = 0.7. Fig. 12a agrees with
the first entry of the second column of Table 3.

With p = 0.7, each input pattern is represented in a
different F2-node. The first time an F2-node is active u0
is copied to z;. Hence, the corresponding mismatches are
zero. This simulation shows also that the search process,
which takes place during the first five trials, becomes a
direct access during the second five trials. Moreover, the
search process does not necessarily include all learned z;
traces before a new node becomes active (cf., pattern D
with p = 0.7; the fifth entry of the second column of
Table 3). The latter depends on the initial values of BU
z; traces (i.e., 7;(0)).

If p = 0.5 the classification process gives a clear illus-
tration of the 2/3-rule. During the presentation of input
pattern A u0 is copied to z,. If input pattern C is pre-
sented the TD expectancy pattern (i.e., ;) is a superset
pattern of the BU input pattern (i.e., u0 in Fig. 11c). In
agreement with the 2/3-rule the resulting z, pattern at the
end of the trial is a section of both patterns. The same
holds for z, and uQ during the second presentation of
input pattern A. Now the TD pattern is a subset pattern
and the BU pattern is a superset pattern.

In contrast to fast learning, if LTM-traces do not reach
equilibrium the 2/3-rule is weak. This is illustrated by
Fig. 14, which shows the results of a simulation equiva-
lent to Fig. 13 except for the presentation time of input

z4i z2j

ey

a b

c d

FIGURE 12. (a)-(d) show z,-traces after classifying patterns 4, B, C, and D respectively, with p =0.7 and with initialization of
activity before presentation of each input pattern. The z-traces do not change after the first presentation of the input sequence.

This figure is associated with the second column of Table 3.



664

z 1i 721 z1i

M. E. J. Raijmakers and P. C. M. Molenaar

N

1j z3i

AN ]

TYTYTYTY rTr=r~f-r—r-r

a b c

TT P TT T FT

75 rrnrrr rTT1T1rTrorrild

d e

FIGURE 13. (a)—(e) show z-traces after classifying patterns A, B, C, A, D respectively, with p = 0.5 and with initialization of
activity before presentation of each input pattern. The traces z,, z,, and z, do not change after the first presentation of the input
sequence. This figure is associated with the third column of Table 3.

patterns (50,000 instead of 500,000). Fig. 14a shows z;
after the first trial; u0 is copied in z,. Fig. 14b shows the
same LTM-trace after presentation of input pattern C. It
appears that the nodes (and consequently also the corre-
sponding z, traces) that did not receive TD input become
zero. In contrast, the nodes that only received BU input
are quenched only a little. Fig. 14¢ shows the z,-trace
after the second presentation of input pattern A. Now the
nodes that received less TD input than BU input are
depressed with regard to u0 and enhanced with regard
to z,.

In all cases learning should stabilize rapidly. Fig. 15
shows the results of simulations with p = 0. In that case
no reset takes place. Nevertheless, a stable recognition
code, consisting of two classes is formed. If p = 0.1 the
same recognition code is formed.

Figs 16 and 17 show results of simulations without
initialization of activity at the beginning of each trial.
As expected, changes in the input are detected automa-
tically, but only if these changes are large enough to
cause a mismatch. Hence, the recognition code shown
in Fig. 16 (o = 0.1 without initialization) differs from
the recognition code shown in Fig. 17 (p = 0.1 with
initialization). If p = 0 no resets can take place. Hence,
all input patterns are classified in one category even if the
BU input pattern and the learned z,-trace cause a max-
imum mismatch (i.e., R = 1). Fig. 17 shows that even in
the latter case learned recognition codes are not removed.

From the above analyses we can conclude that the
classification behavior of Exact ART agrees with that
of ART 2 with regard to stability and plasticity proper-
ties. Although we mainly discussed the equilibrium
behavior the most important conclusion can be drawn
about transient behavior: transient behavior does not ser-
iously affect the stability of the system. One exception is,
however, that the Fl-activity is sensitive to either the

zli z1i

rapidity of the LTM-ode’s or the rapidity of FO-ode’s.
If the LTM ode’s are calculated too fast or FO-ode’s are
calculated too slow then F1 performs an additional con-
trast enhancement. Nevertheless, classifications will still
be performed, but the requirements of the match proce-
dure are not assured. To solve this problem, we decided
to introduce a parameter ¢ which regulates the rapidity of
FO ode’s.

After examination of the transient behavior of indivi-
dual modules in Section 3 we will now take a closer look
at these modules working together. Fig. 18 shows the
values of R, S, ; (the index of the winning node y5; in
F2), and A ¢ during the first classification of input pattern
D with initialization and p = 0.7. Two resets are
involved. Fig. 18 illustrates some properties of transient
behavior. First, a reset only occurs if R is stabilized. At
the beginning of the trial and just after each reset
{between 0-10, 160—170, and 375-385) R is temporarily
increased above 1 — p. Due to the buffer in § this does
not induce a reset. Second, a reset is faster induced if R is
larger. This follows directly from eqn (21).

4.2. A Larger Classification Problem

In the former section we studied a very small classifica-
tion problem with which we could examine important
aspects of the stability and plasticity of Exact ART dur-
ing fast learning. Only for illustration, also the outcomes
of a larger classification problem are shown. The input
set contains 50 patterns. All patterns are presented sev-
eral times in a fixed sequence. Each pattern is presented
during 1500 time units. This means that fast learning is
not assured for each presentation of an input pattern.
With respect to Appendix C, the following parameter
values are changed: N = 25, M = 26, 6 = 0.04, o =
0.01, z;(0) = 0.04. Two classifications are made: one

z1i

N/

LR SR LIRS

a b

T Irrorrrriua

Cc

FIGURE 14. (a)-(c) show z-traces after classifying patterns A, C, A respectively and with p = 0.5, with initialization of activity
before presentation of each input pattern. In contrast to Fig. 13 learning is not fast.
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FIGURE 15. (a)-(e) show z,-traces after classifying patterns A, B, C, A, D respectively, with o = 0.1 and with initialization of

activity before presentation of each input pattern. The traces z,, z,, and z, do not change after the first presentation of the input
sequence. This figure is associated with the fourth and fifth column of Table 3.

z3i z3i z2i z2i z2i
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FIGURE 16. (a)—(e) show 2 ,traces after classifying patterns A, B, C, 4, D respectively, with p = 0.1 and without initialization of
activity before presentation of each input pattern. The traces z,, and z; do not change after the first presentation of the input
sequence. This figure is associated with the sixth column of Table 3.

z3i z.3i z 3i

rvrrrrrrt T Tt LND S B S M B |

a b C

FIGURE 17. 2;-trace after presenting 4, B, C, Aand Din sequence with p = 0, without initialization of activity when a following
input pattern is presented. This figure is associated with the last column of Table 3. (a) z; after the first presentation of A. (b) z3
after learning Pattern B. (c) All further patterns are classified by node 3; the z,-trace changes no more. Note that u0 during
presentation of input pattern D and z; are orthogonal. Nevertheless, the learned z;-trace is not changed. That is, learned
information is not removed.

4 =
34
activity
24
1+
I-p
0 T T T T v T T L 1
0 100 200 300 400 500

Time

FIGURE 18. Time plot of R (plain black line), S (plain grey line), the index of the winning y5-node (thick lines), and A (dashed line)
as a function of time. The figure shows the trial of the first classification of pattern D. Time = 0 at the beginning of the trial. p = 0.7
and initialization takes place at the beginning of the trial.

classification with p = 0.8, and one classification with p means that a stable recognition code is formed rapidly.
= 0.6. Fig. 19 shows the input patterns grouped by the Fig. 20 shows the input patterns grouped by the category
category to which they belong during the third presenta- to which they belong during the fourth presentation with
tion with p = 0.6. After the second presentation only two p = 0.8. After the third presentation only one pattern was

patterns were classified in a different category. This classified in a different category.
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FIGURE 19. The resulting classification of 50 input patterns with o = 0.6. All patterns are presented in a specified sequence. This
sequence is presented three times. Learning is not fast and the network is Initialized at the beginning of each trial.

5. CONCLUSION

In this article we introduced Exact ART, an implementa-
tion of ART. Exact ART is completely defined by a
system of ode’s, which does not hold for the current
implementations of ART. Exact ART is primarily
based on ART 2 and constitutes an attempt to implement
the theoretical framework in Grossberg (1980). This
results in a completely stand-alone network that self-
organizes stable recognition codes for analog input
patterns. In Sections 3 and 4 we showed by means of
analytical methods and simulation studies that Exact
ART obeys all demands with regard to stability and plas-
ticity that counted as design principles for ART 2
(Carpenter & Grossberg, 1987b). Moreover, the classi-
fication of analog input patterns is equivalent to the
classification made by ART 2. Below, the main differ-
ences between ART 2 and Exact ART are summarized.

First of all, the system of ode’s, which defines Exact

ART completely, is stand-alone. In contrast to ART 2,
the orienting subsystem and F2 are implemented by ode’s.
The structure of the orienting subsystem is a neural oscil-
lator. F2 is a GDF. The introduction of a GDF was the
major change we made. Furthermore, being stand-alone
means that initialization of activity before the presenta-
tion of each input pattern is not necessary (the latter also
holds for ART 3). As a consequence of the complete
implementation, however, the computing of larger classi-
fication problems requires a lot of CPU-seconds and
RAM. This is mainly due to the application of a numer-
ical-integration algorithm that is appropriate for stiff
problems. Since it was not our aim to develop an efficient
model, but to study the dynamics of a realistic model,
we do not consider the expensive computing effort as a
problem. Moreover, since the classification algorithm is
relatively simple in the fast learning case, a classification
of a set of input patterns can be calculated quickly.,
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FIGURE 20. The resuiting classification of 50 input patterns with p = 0.8. All patterns are presented in a specified sequence. This
sequence is presented three times. Learning is not fast and the network is initialized at the beginning of each trial.

A second major difference is a simultaneous instead
of sequential update of STM and LTM ode’s. As a con-
sequence the 2/3-rule is strong instead of weak in the
fast-learning case. A strong 2/3-rule implies that TD
expectancies stabilize in less presentations of input
sequences. Moreover, the classification procedure
seems easy to describe mathematically, since learning
agrees with transforming the active TD expectancy pat-
tern (z,) by taking the section with the active BU pattern
(u0). It would be interesting to make a mathematical
description of the classification process and to compare
this description with other unsupervised classification
procedures, for example cluster analysis.

A third difference between ART 2 and Exact ART
is that the characteristics of the match procedure and
the 2/3 rule are derived mathematically. The proofs
are relatively simple because we changed the
normalization features of activity layers and we moved
the partially linear function f from F1 to FO and the
LTM ode’s.

In general, we can say that Exact ART is a proper
implementation of ART that maintains the features
of ART with regard to biological plausibility, psycho-
logical plausibility, and environmental constraints.
Moreover, it shows very complex sequential behavior
that is completely regulated by a system of ode’s
which does not contain explicit descriptions of the
sequence of events that should take place. The
sequential behavior seems to agree with (cognitive)
psychological concepts as ‘‘hypothesis testing’’,
“‘arousal events’’, and STM. At the same time,
Exact ART obeys very basic physical and biological
demands like stand-alone running in real time.
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APPENDIX
Notation
The length of FO and F1 vectors N
The length of F2 vectors M

A vector name is written bold,
elements italic:

Activity of an individual unit i in F1:
Activity vector at time .

X = (X )Xy XN)

X

x() = (xy(B),ey X{Dseers
xpB)

Sum of the elements of vector
x0, u0, x, u, q. p is respectively
Relative activity of an unit x;

X0, u0, x, u, q, p

i.e., =, is written in capitals X

The input vector is I= 0l 00y
Sum of the elements of vector I is 1

Sum of the elements of vector r, the

match measure, is I R

Relative value of input unit i, — Ji

Activity vectors of F2, k < 6:
The subscript of the active y5; node is  J
LTM connection between a unit y5,;

of F2 and p; of F1: Zji
LTM connection between an unit p;
of F1 and y5; of F2: Zi

The LTM vector between F1 and the
active F2-node ; can be both
top-down (TD):

and bottom-up (BU):

The sum of elements of a vector z;
multiplied by parameter d: X
Vector of relative weights: Z;=(Z 5, D gl in)
or: Z;=(Zij,iZifsZng)

Z; = (Zj1seesTdinesZIN)
Z) = (2175 0sZiheerINI)

A. Proofs Concerning F1 and the Orienting
Subsystem

From Section 3.1 follows that in equilibrium:
pi=dzsi+u; (A1)

Pi U+ dzjl

q4i= (A2)

=N T N
k; Pk kZ‘l u +d k; ZJk
eqn (A2) is equivalent to:

_ uit X2y

= (A3)
Z U+ x
k=1
N
Zy= =i 2 2> 0, Z;,=0 otherwise
i=1
z 2k
k=1
N
x=d kZ-l Zk
Furthermore:
b g;+x;
U= N (Ad)
Bk
X = _ auitud; (A5)
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Since in equilibrium holds that
% i N N
= = 2 U0, = =
TS k:luo‘ /Elx" !

eqn (A3) is reduced to:

ui=q;(1 +x)— xZ;; (A6)
Substitute eqn (A6) in eqn (A4):
b+ Digi(1 +x) — xZsi) = bg; + x; (A7)

Substitute eqn (A6) in eqn (AS5):

_ u0; + a(g;(1 +x) — xZy)
I+a

X (AB)

Substitute eqn (A8) in eqn (A7):

(L +a)l(b+ 1)(q:i(1 +x) — xZ3) — bg;] = u0; +alg(1+ x) — xZj;)
_u0;+x(1+ b +ab)z,,
4+ x(1+ b+ aby)
(A9)

B. The Gated Dipole Field

Assuming that no arousal has occurred, in equilibrium the following
equalities hold for the GDF (Section 3.1):

vl =y5; (A10)
¥2;=y6; (A11)
¥3; = zlyl; (Al13)
y4; =222, (Al4)
{1 it >1 foranks&j}
V5= . (A15)
0 otherwise
Y6, =v4;, —v3; (A16)
oy = 6+6—[»617—TT (A17)
2 By (A18)

T B+ep2 -1

If an arousal event occurs after stabilization of a winner in y5, the
following analysis concerning the transient activity can be made. The
analysis concerns situation 2 described in Section 3.5.2. Rewriting eqn
(13), defined in Section 3.1, gives:

dys, i
& = B(h(y5;) +y3; + el;) — ¥5; ; lh(vSk)+y4j+y3j+elj+A

(A19)
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If y5; = 0, which holds for j = M — | then
dy5; _
i B(y3; +el;) = B(zl;Ag +el)) (A20)
If y5;, = B = 1, which holds for j = M, then
M
DY Bya, +A), since h(S) = 2. (Y5 (A21)
et (4, +A), since A(yS;) s (v5¢)

eqn (A2l) implies that dy5,/dr becomes negative, and hence y5y is
depressed. In contrast, ¥5,, k < M, increases. If y5, = y5,for k, | = M:

dys dvs
SO S = (B ySONOS + Ae)eh — ) +el—el)  (A22)

From eqn (A22) we can deduce the resulting order of the grow rates of
nodes y5;. The latter is described in Section 3.5.

C. Default Parameter Values

FO and F1 parameters

Number of FO-units and F1-units (N) 10
Decay (A) 0.001
Upper bound of activation (B) 1.0
Pos. connection from g to u (b) 10.0
Pos. connection from « to x (a) 10.0
Rapidity of F0 equations (¢) 100.0
F2 parameters
Number of F2-units (M) 4
Strength of input to F2 (e) 0.01
Strength of input from F1 to F2 (d) 0.5
Increase of transmitter (3) 0.5
Decrease of transmitter () 5.0
Threshold of transmitter (I') 0.1
Upperbound of transmitter () 0.5

Rapidity of dipole-transmitter equations (¢)  0.001
LTM parameters

Initial weights (z,;(0)) 0.01
Initial weights (z;(0)) 0.0
Threshold in LTM equations (9,) 0.9
Rapidity of LTM (F1 < - > F2) (w) 0.005
OSS parameters
Vigilance (p) 0.5
Rapidity of OSS equations (») 100.0
Rapidity of S equation (¢) 0.1
Decrease of S (w) 1.0
General parameters
Threshold in signal function (8) 0.1
Strength of arousal (c) 10.0

Integration parameters
Duration of 1 trial 500,000
Tolerance of numerical integration 0.0001



